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Advancing Out-of-Distribution Detection through
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Design
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Abstract—In the dynamic realms of machine learning and deep
learning, the robustness and reliability of models are paramount,
especially in critical real-world applications. A fundamental
challenge in this sphere is managing Out-of-Distribution (OOD)
samples, significantly increasing the risks of model misclassifica-
tion and uncertainty. Our work addresses this challenge by en-
hancing the detection and management of OOD samples in neural
networks. We introduce OOD-R (Out-of-Distribution-Rectified),
a meticulously curated collection of open-source datasets with
enhanced noise reduction properties. In-Distribution (ID) noise
in existing OOD datasets can lead to inaccurate evaluation
of detection algorithms. Recognizing this, OOD-R incorporates
noise filtering technologies to refine the datasets, ensuring a more
accurate and reliable evaluation of OOD detection algorithms.
This approach not only improves the overall quality of data but
also aids in better distinguishing between OOD and ID samples,
resulting in up to a 2.5% improvement in model accuracy and
a minimum 3.2% reduction in false positives. Furthermore, we
present ActFun, an innovative method that fine-tunes the model’s
response to diverse inputs, thereby improving the stability of
feature extraction and minimizing specificity issues. ActFun
addresses the common problem of model overconfidence in
OOD detection by strategically reducing the influence of hidden
units, which enhances the model’s capability to estimate OOD
uncertainty more accurately. Implementing ActFun in the OOD-
R dataset has led to significant performance enhancements,
including an 18.42% increase in AUROC of the GradNorm
method and a 16.93% decrease in FPR95 of the Energy method.
Overall, our research not only advances the methodologies in
OOD detection but also emphasizes the importance of dataset
integrity for accurate algorithm evaluation. By refining the
distinction between in-distribution and out-of-distribution data,
our contributions aim to enhance the model’s proficiency in iden-
tifying and generalizing from unknown data, thereby ensuring
greater model reliability in diverse applications.

Index Terms—Out-of-Distribution detection, OOD datasets, In-
Distribution datasets, OOD evaluation.

I. INTRODUCTION

THE increasing significance of Out-of-Distribution (OOD)
detection in deep neural networks is underscored by its

crucial role in enhancing network security and reliability[1,
2, 3, 4]. Despite their impressive capabilities, deep neural
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networks can produce unreliable predictions when encounter-
ing inputs outside their training distribution. This unreliability
poses a considerable risk in safety-critical applications, such
as medical diagnostics[5] and autonomous vehicles[6], where
classifier dependability is imperative.

OOD detection is primarily concerned with distinguishing
uncertain OOD predictions from more reliable In-Distribution
(ID) predictions. The vital role of OOD detection in en-
suring the safe deployment of machine learning systems is
highlighted, especially in open-world settings[7] where input
data distributions are inherently unpredictable. It serves a
dual purpose: reducing the likelihood of false predictions and
bolstering the model’s credibility and practicality in real-world
applications. OOD detection hinges on accurately estimating
data density or depicting features within a distribution, a task
made challenging by the complex nature of data distributions.
Typically, models are pre-trained on in-distribution (ID) data,
which often covers a limited range, contrasting starkly with
the diverse and multifaceted nature of real-world data.

In the increasingly scrutinized realm of OOD detection
tasks, assessing the performance of various detection algo-
rithms becomes a critical topic, which determines how to
make fair and effective comparison. However, we’ve noticed
a crucial issue: the OOD datasets commonly used in the
conventional evaluation always contain a substantial number
of ID samples as shown in Fig. 1. The conventional evaluation
methods require detection algorithms to differentiate between
the OOD dataset and the ID dataset. Yet, when the OOD
dataset includes ID samples (noise data), the expected behavior
would be to identify this noise data as ID samples and the rest
of the OOD dataset as OOD. However, this approach might
yield lower evaluation results because conventional evaluation
methods mandate that the detection algorithm categorizes all
samples within the OOD dataset as OOD samples.

To address these issues, we have undertaken the crucial
task of purifying the OOD dataset. This purification process
involves the meticulous removal of mislabeled ID samples,
thereby ensuring the integrity and clarity of the OOD dataset.
Training models with a purified OOD dataset better equips
them to mirror real-world conditions, where the separation
between ID and OOD data is not always clear-cut. The use
of pre-trained models on such purified datasets is aimed at
enhancing their robustness, aligning with the core goal of
OOD detection—to effectively generalize across various envi-
ronments and reliably identify novel, unseen OOD instances.
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Fig. 1: The illustration of the out-of-distribution (OOD) detection process adopted by our classifier. Texture[8], Places365[9],
SUN subset[10] and other datasets are taken as input. The classifier predicts the input data through the network category. The
rightmost part of the figure highlights the OOD detection mechanism. It shows that some samples (such as the two pictures

shown with orange borders) are correctly classified and, therefore, considered IDs, but some samples (such as the blue
picture shown in the border) are accurately identified as OOD. This shows that some samples of classification pairs are

mistakenly placed in the OOD test set.

This approach not only underscores the importance of dataset
purity in OOD detection but also highlights our commitment
to refining methodologies for more accurate and reliable model
performance in practical applications.

After analyzing the potential negative impact of noise within
the dataset on OOD detection tasks and constructing a purified
dataset, we further investigated methods to enhance the perfor-
mance of existing OOD detection algorithms, termed ActFun.
OOD detection is a single-sample hypothesis testing task,
where the detection outcome of an individual sample might
be influenced by the sample’s specificities, leading to less
robustness. Hence, we propose conducting detection within the
input’s neighborhood. Specifically, instead of calculating the
activation of a single input, we compute the expectation within
the input’s neighborhood. Moreover, we derived a simplified
formula for computing this expectation theoretically. A key
benefit of ActFun is its ability to improve the separability
between ID and OOD data distributions, resulting in notable
enhancements in the area under the receiver operating char-
acteristic curve (AUROC), from 49.35% to 67.77%, and a
significant reduction in the false positive rate of OOD (neg-
ative) examples when the true positive rate of in-distribution
(positive) examples is as high as 95% (FPR95), from 82.6%
to 65.67%.

Additionally, our study includes an analysis exploring the
underlying mechanisms of ActFun’s contribution to OOD
detection. We demonstrate ActFun’s effectiveness, especially
in scenarios where OOD activations exhibit increased chaos
and positive skewness compared to ID activations—a char-
acteristic frequently observed in numerous OOD datasets.
A comprehensive evaluation of widely-recognized OOD de-
tection benchmarks confirms ActFun’s superior performance
relative to established baseline methods.

In summary, our research addresses the pressing issues of
dataset noise and the refinement of evaluation techniques in

OOD detection, presenting these key contributions as pivotal
advancements in the field:

1) We present the OOD-R dataset, an innovative amalgama-
tion of existing open-source datasets, distinguished by its
low noise level. This rectified dataset, through strategic
noise filtering, offers enhanced data quality for OOD
detection, providing clearer and more reliable samples
for research and model development.

2) We have also introduced the ActFun activation structure,
which substitutes traditional ReLU with the expectation
version of ReLU in various networks. This change
significantly boosts OOD detection’s specificity and
accuracy. Notably, ActFun has shown a considerable
improvement in evaluation methods, marked by up to
18.42% increase in AUROC and a minimum of 16.93%
decrease in FPR95, underscoring the importance of
precise hyperparameter calibration in optimizing OOD
detection.

3) Our research has examined the impact of the hyperpa-
rameter β on different OOD detection algorithms. We
found a strong correlation between this parameter and
each method’s performance, highlighting the need for
accurate hyperparameter tuning, especially when mod-
ifying activation functions, to enhance OOD detection
effectiveness.

II. RELATED WORK

OOD detection [11, 12] plays a pivotal role in ensuring
the reliability and robustness of machine learning models,
especially in computer vision. Accurately identifying and
processing data that significantly deviates from the training
distribution is essential in real-world scenarios characterized
by unpredictable variations. This section delves into datasets,
the core methodologies and key findings within the OOD
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detection domain, underscoring their contributions and limi-
tations in propelling the field forward.

Diverse datasets for OOD model evaluation. In our
research, we utilize ImageNet[13] as the primary ID dataset,
encompassing approximately 14 million images across over
20,000 categories. ImageNet’s extensive usage in visual object
recognition research makes it a cornerstone dataset for numer-
ous computer vision endeavors. We incorporate five diverse
open-source datasets for OOD evaluation, each offering unique
challenges and perspectives. These include Texture[8], known
for its varied range of natural textures; ImageNet-O[14],
a subset of ImageNet curated explicitly for its challenging
OOD properties; iNaturalist[15], which covers a wide array of
biological species; Places365[9], featuring a variety of natural
and urban scenes; and the SUN subset[10], focusing on a broad
range of indoor environments. These datasets, distinct from
ImageNet categories, are integral in assessing our model’s
classification capabilities across varied scenarios.

Strategies for generating models. Generative models are
a noteworthy strategy in OOD detection, estimating input
data’s probability density[16, 17, 18, 19, 20, 21]. However,
they sometimes misclassify OOD data as high likelihood[22]
and present challenges in training and optimization, often un-
derperforming compared to discriminative models. Our work,
therefore, concentrates on discriminative-based approaches for
OOD detection. Despite the theoretical appeal of generative
models[23, 24, 25, 26, 27, 28], limitations make them less
suitable for large-scale OOD detection goals. People prioritise
enhancing the robustness and scalability of methods. Another
research direction involves incorporating auxiliary outlier data
for model regularization[2, 29, 30, 31, 32, 33]. This includes
both realistic[2, 32, 34, 35, 36] and synthetic images generated
by GANs[37]. Our approach diverges by refining the model
using only in-distribution data, avoiding the complexities
of compiling and integrating external anomaly datasets, and
streamlining the model development process while focusing
on practical, scalable solutions for effective OOD detection.

Development of evaluation methods for OOD detec-
tion.The OOD detection landscape has seen significant ad-
vancements over recent years. Nguyen et al.[38] highlighted
deep neural networks’ susceptibility to adversarial attacks,
introducing methods to assess network reliability using adver-
sarial samples. Hendrycks and Gimpel[1] set a baseline with
MSP[1], leveraging the softmax output’s inherent uncertainty
for OOD detection. Lee et al.[39] improved OOD detection
using Mahalanobis distance within the feature space. Liu
et al.[2]’s energy-based method furthered this progress by
utilizing network energy estimations for OOD discernment.
The Generalized ODIN method[40, 41] introduced tempera-
ture scaling and peak adjustments for enhanced performance.
Recent developments include Wang et al.[42]’s approach,
combining virtual adversarial training with logical probability
matching, and Hendrycks et al.[43]’s KL-Matching method,
focusing on probability distribution differences for unknown
data evaluation. Sun et al.[44]’s ReAct model employs post-
hoc unit activation modifications, aligning activation patterns
with optimal performance scenarios. Our ActFun method,
in comparison, facilitates smoother transitions in learning

feature representations, thereby enhancing OOD detection. Lin
et al.[45]’s multi-level feature extraction technique and the
Model Output Statistics[46] approach have shown promise
in OOD detection. However, each has its limitations and
strengths, particularly in scalability and effectiveness across
varied dataset sizes.

III. METHOD

In the burgeoning era of artificial intelligence (AI), the
quality and integrity of datasets have become paramount. As
AI models evolve, transcending essential pattern recognition
to achieve nuanced understanding and reasoning, the role
of datasets, particularly those handling OOD samples, is
critical in ensuring model robustness and reliability. OOD
datasets, characterized by their variability and noise, mirror
the unpredictability and complexity of real-world scenarios. In
such an environment[47], cleaning and refining OOD datasets
are imperative, not just procedural. Neglecting this essential
aspect can render models susceptible to misinterpretation,
diminished accuracy, and compromised robustness when faced
with unanticipated data. Thus, Clean OOD datasets are crucial
in equipping AI models to navigate and adapt to diverse and
dynamic real-world contexts adeptly.

A. Dataset Optimization for Enhanced OOD Detection

Our study has concentrated on refining five prominent
open-source datasets to enhance the fairness and accuracy of
Out-of-Distribution (OOD) detection evaluation. This refine-
ment process entailed rigorous image verification within each
dataset, ensuring alignment with the corresponding synsets
identified in our initial analysis. Our dataset selection includes
Places365[9], Texture[8], iNaturalist[15], SUN subset[10], and
ImageNet-O[14].. The primary goal of this integration is to
improve the accuracy of class classification within our dataset
evaluation, ensuring that it genuinely represents the true nature
of the images.

Our method categorises images from these datasets into
1,000 categories recognized by the ImageNet-1K classification
model. This meticulous categorisation process aims to assign
each image accurately to its correct type despite challenges
such as occlusions, distracting elements, and multiple types
within many images. We employ a multi-user independent
classification system to ensure a broad spectrum of repre-
sentation and precise labelling. An image is classified as
in-distribution (ID) only if it garners substantial majority
consensus among reviewers; in the absence of such consensus,
it is considered an OOD sample. This approach mitigates the
risk of low-confidence classifications.

Additionally, we provide comprehensive documentation of
the ID data category labels in the OOD dataset and utilize
cosine similarity metrics for visual similarity analysis. Sev-
eral methodologies are implemented to refine the quality of
annotations further. Annotators uncertain about an image’s
category can label it as ”Uncategorized,” signaling the need
for further review. Each image undergoes evaluation by at least
five independent annotators, with consistent results guiding its
final classification. This process includes multiple rounds of
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Fig. 2: Categorization of data samples within various OOD datasets. This figure demonstrates the classification results where
each image is labeled as either ID or OOD across different datasets. Red boxes indicate images incorrectly labeled as ID

within OOD datasets (false negatives), and green boxes signify correctly identified OOD samples (true positives). The results
highlight the challenge of distinguishing complex patterns in OOD detection tasks and the importance of accurate labeling

for the optimization of OOD algorithms.

filtering and regular quality checks to uphold high annotation
standards. For particularly challenging images, especially in
ImageNet-O[14], we seek additional reviewer input to more
accurately capture category complexity.

A crucial aspect of our methodology is the careful sep-
aration and elimination of ID data from the OOD dataset.
As shown in Fig. 2, this meticulous classification process
results in a dataset predominantly composed of authentic OOD
samples, enhancing the validity and fairness of our image
classification and OOD detection evaluations. After extensive
optimization, our curated dataset significantly reduces noise,
leading to more reliable OOD detection. This enhanced dataset
represents a novel combination of deep feature extraction and
semantic analysis in image classification tasks, ensuring an
equitable and accurate evaluation of OOD detection models.

The OOD-R dataset, resulting from our meticulous curation
and evaluation, forms the foundation of our evaluation meth-
ods and model improvements. This dataset, a balanced mix of
ID and OOD data, has undergone rigorous and multifaceted
evaluation to ensure its diversity, completeness, and effective-
ness in enhancing OOD detection capabilities within neural
network models.

B. Activation Function Design for OOD Detection
Leveraging the OOD-R dataset, we have utilized models like

BiT[48] and VGG[49], capitalizing on their exceptional clas-
sification and feature extraction capabilities. Our evaluation
paradigm integrates a suite of OOD scoring functions, includ-
ing MSP[1], MaxLogit[43], Energy[2], ReAct[44], ViM[42],
Residual, GradNorm, Mahalanobis[39], and KL-Matching[43].
Utilizing the OOD-R dataset for evaluation contributes to a
fair assessment of the model’s adaptability and generalization
capabilities in out-of-distribution (OOD) context.

Considering that out-of-distribution sample detection is a
single-sample hypothesis testing task—where a single sample
is evaluated to produce its OOD score—the specificity of
individual samples could potentially diminish detection perfor-
mance. Therefore, we aim to mitigate the impact of specificity
by computing the expectation of a single sample within a
certain neighborhood. Specifically, we depart from using the
vanilla ReLU activation function, which only computes the
activation value for a single input. In this paper, we calculate
the expected activation values within the input’s neighborhood,
as fomulated below:

g(x) = Eϵ∼pβ
[ReLU(x− ϵ)] , (1)

where pβ(ϵ) is implicitly defined. Hence, the determination of
whether the test sample is an OOD sample no longer relies
solely on the activation of a single input but instead computes
the average activation across the entire neighborhood. This
approach contributes to more robust test results. In practice, for
the sake of simplifying the computation process, we conduct
the following derivation and simplification. The Eq. (1) can
be reformulated in integral form as :

g(x) =

∫ +∞

−∞
pβ(ϵ)ReLU(x− ϵ)dϵ. (2)

With respect to x, the differential of the Eq. 2 is:

d

dx
g(x) =

∫ +∞

−∞
pβ(ϵ)Θ(x− ϵ)dϵ =

∫ x

−∞
pβ(ϵ)dϵ. (3)

Here, we choose the pβ(ϵ) as:

pβ(ϵ) =
β

(eβ
ϵ
2+e−β ϵ

2 )2
. (4)
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Fig. 3: Performance of various OOD detection algorithms across different datasets, before and after noise reduction. Each
subplot represents a different detection method, with the solid lines indicating the detection performance on the original

OOD datasets and the dashed lines showing performance on the noise-reduced datasets (OOD R). The blue and red lines
correspond to the BiT[48] and VGG[49] models, respectively. This analysis demonstrates the effects of noise reduction on

the sensitivity and specificity of OOD detection methods, with varying degrees of impact observed across different methods
and datasets.

Then the Eq. (3) can be expressed as:
d

dx
g(x) =

1

1 + exp(−βx)
. (5)

By integrating both sides of the equation, we can obtain:

g(x) =
1

β
log(1 + exp(βx)), (6)

which is the calculation formula for the Softplus function.
Combining Eq. (6) and (1), we have got an alternative to the
expectation of activations within the neighborhood of input,
which is convenient in practice.

As demonstrated in our detailed equations and analyses, the
ActFun structure accentuates activation dynamics, fostering a
more proficient neural network architecture in OOD detection.
We exploit the intrinsic properties of the Softplus function to
ensure smoother and more adaptable activation. This approach
optimizes the model’s response to diverse inputs, thereby
improving its accuracy and reliability in environments with
unpredictable data. In the Experiments section, we extensively
discuss the impact of hyperparameters β in Eq. (6).

IV. EXPERIMENTS

In this section, we carefully evaluate the efficacy and
applicability of our curated dataset, OOD-R, within the frame-
work of comprehensive OOD detection tasks. Our evaluation

Dataset Texture ImageNet-O iNaturalist Places365 SUN subset

OOD 5640 2000 10000 10000 10000
OOD-R 5253 1933 9905 9449 9579

TABLE I: The reduction in the number of samples in the
corrected out-of-distribution dataset is used to refine the data

set and reduce noise interference.

strategy is multifaceted, designed to thoroughly scrutinize the
robustness and validity of the dataset across various testing
paradigms. Initially, our focus is on the well-established large-
scale OOD detection benchmark[46] utilizing the ImageNet
dataset. This stage, detailed in Section A, provides foun-
dational insights into the performance characteristics of the
OOD-R dataset, offering robust analysis within a recognized
benchmarking environment. This ensures that our findings are
comprehensive and comparable within the broader research
community. Next, in Section B, we delve deeper into eval-
uating enhancements integrated into our approach. Here, we
compare our methods with existing models on the BiT[48]
and VGG[49] networks to demonstrate the impact of these
improvements on OOD detection capabilities. Finally, we find
different results from the previous use of our proposed dataset
under the influence of different hyperparameters β, see Section
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Method
Texture Places iNaturalist Imagenet-o SUN Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

GradNorm 82.20 57.15 84.22 59.89 86.19 58.22 53.92 91.77 88.90 43.81 79.09 62.17
GradNorm ActFun 85.12(+2.92) 50.64(-6.51) 87.51(+3.29) 50.5(-9.39) 90.74(+4.55) 42.48(-15.74) 59.39(+5.47) 88.72(-3.05) 92.18(+3.28) 33.78(-10.03) 82.99(+3.90) 53.23(-8.94)

ReAct 90.15 44.53 91.08 46.64 92.85 38.56 58.91 89.24 94.49 29.55 85.50 49.70
ReAct ActFun 93.23(+3.08) 33.87(-10.66) 91.62(+0.54) 42.70(-3.94) 95.11(+2.26) 26.13(-12.43) 63.23(+4.32) 85.46(-3.78) 95.06(+0.57) 26.08(-3.47) 87.65(+2.15) 42.85(-6.85)
Mahalanobis 97.31 14.32 73.88 81.84 85.82 64.79 80.74 69.63 78.75 72.78 83.30 60.67

Mahalanobis ActFun 98.31(+1.00) 8.32(-6.00) 74.23(+0.35) 80.07(-1.77) 87.83(+2.01) 59.72(-5.07) 82.74(+2.00) 63.99(-5.64) 80.20(+1.45) 68.78(-4.00) 84.66(+1.36) 56.18(-4.49)
Energy 80.83 74.41 83.82 72.02 84.65 74.77 63.97 96.22 88.09 59.69 80.27 75.42

Energy ActFun 82.69(+1.86) 68.34(-6.07) 83.60 71.69(-0.33) 85.74(+1.09) 70.16(-4.61) 66.12(+2.15) 95.45(-0.77) 88.21(+0.12) 58.94(-0.75) 81.27(+1.00) 72.92(-3.50)
MaxLogit 81.40 74.05 83.85 73.16 86.93 70.32 63.42 96.84 87.71 62.39 80.66 75.35

MaxLogit ActFun 82.64(+1.24) 69.88(-4.17) 83.73 72.21(-0.95) 88.04(+1.11) 64.26(-6.06) 65.31(+1.89) 95.91(-0.93) 87.87(+0.16) 61.49(-0.90) 81.52(+0.86) 72.75(-2.60)
MSP 79.63 77.42 80.49 78.02 88.07 64.38 57.67 96.90 83.04 70.92 77.78 77.53

MSP ActFun 79.56 75.56(-1.86) 80.56(+0.07) 77.25(-0.77) 88.55(+0.48) 61.34(-3.04) 57.49 96.90 83.09(+0.05) 69.89(-1.03) 77.85(+0.07) 76.19(-1.34)

TABLE II: The upper table presents the performance metrics of the BiT model’s OOD detection capabilities, following the substitution of
the traditional ReLU activation function with ActFun. The metrics reported include AUROC and FPR95. Each method’s performance is

evaluated to ascertain the impact of the ActFun modification on the model’s OOD detection efficiency.Among them, “↑” represents that the
larger the value, the better, and “↓” represents that the smaller the value, the better. Our method is written as method ActFun, the

best-performing items are shown in bold, and the increase or decrease numbers are in parentheses.

Method
Texture Places iNaturalist Imagenet-o SUN Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

GradNorm 58.10 91.28 41.89 98.88 53.33 98.20 47.63 95.65 45.83 98.20 49.35 96.44

GradNorm ActFun 70.46(+12.36) 87.40(-3.88) 67.29(+25.40) 91.67(-7.21) 76.56(+23.23) 90.12(-8.08) 50.66(+3.03) 95.29(-0.36) 73.86(+28.03) 87.91(-10.29) 67.77(+18.42) 90.48(-5.96)
Energy 74.94 82.73 77.21 83.37 84.11 75.40 63.91 87.84 78.08 83.63 75.65 82.60

Energy ActFun 79.11(+4.17) 69.07(-13.66) 84.42 (+7.21) 63.93(-19.44) 90.12(+6.01) 50.22(-25.18) 63.82 85.36(-2.48) 86.17(+8.09) 59.80(-23.83) 80.73(+5.08) 65.67(-16.93)
ReAct 76.95 82.12 77.30 83.13 84.40 74.81 64.41 87.74 78.27 83.03 76.27 82.17

ReAct ActFun 81.09(+4.14) 68.15(-13.97) 84.18(+6.88) 63.75(-19.38) 90.23(+5.83) 49.39(-25.42) 64.27 85.31(-2.31) 85.97(+7.70) 59.46(-23.57) 81.15(+4.88) 65.21(-16.96)
MaxLogit 76.67 76.66 78.95 77.36 86.43 61.91 63.43 89.71 79.83 77.00 77.06 76.53

MaxLogit ActFun 79.98(+3.31) 66.70(-9.96) 84.81(+5.86) 62.48(-14.88) 91.47(+5.04) 41.53(-20.38) 63.43 88.00(-1.71) 86.37(+6.54) 59.09(-17.91) 81.21(+4.15) 63.56(-12.97)
MSP 78.66 72.64 81.04 74.03 87.34 54.65 62.27 91.41 81.76 72.86 78.22 73.12

MSP ActFun 80.41(+1.75) 67.33(-5.31) 84.03(+2.99) 64.57(-9.46) 91.09(+3.75) 41.15(-13.50) 62.82(+0.55) 89.91(-1.50) 85.30(+3.54) 62.30(-10.56) 80.73(+2.51) 65.05(-8.07)
KL-Matching 83.21 61.55 80.92 74.78 89.33 41.95 67.08 84.69 81.73 74.03 80.45 67.40

KL-Matching ActFun 83.37(+0.16) 61.96 81.00(+0.08) 75.20 89.51(+0.18) 41.29(-0.66) 67.10(0.02) 84.27(-0.42) 81.80(+0.07) 74.11 80.56(+0.11) 67.37(-0.03)

TABLE III: The lower table details the evaluation of the VGG model’s OOD detection after integrating the ActFun function in place of
ReLU. Similar to the BiT model, this table reports the AUROC and FPR95 metrics, offering a comparative view of the performance across

the same diverse datasets, which enables a direct assessment of how the Softplus function influences the VGG model’s ability to
discriminate between in-distribution and OOD samples. The table also summarizes the average performance across all datasets, providing a

holistic view of the effectiveness of the ActFun adaptation.

C. The results presented in this section highlight our method’s
advancements, contributing to the overall assessment of the
OOD-R dataset’s performance and applicability.

A. Enhancing Datasets for Improved Data Quality Standards

To elevate data quality standards and address the limitations
imposed by noise, we introduce the open-source dataset group
OOD-R, as shown in Table I. This innovative dataset employs
noise filtering technology to provide a sample repository with
enhanced clarity and reliability. Our comprehensive evalua-
tion, using models like BiT[48] and VGG[49], demonstrates
significant improvements. We observed a 2.5% increase in
AUROC using MaxLogit[43] and a substantial 3.2% reduction
in FPR95 with ViM[42]. Fig. 3 graphically represents these
findings, emphasizing the crucial role of datasets in improv-
ing assessment accuracy and reliability. Our dataset’s unique
low noise characteristic, extensively discussed in the Results
section, provides context for understanding these experimental
results and underscores its contribution to enhancing the
accuracy and credibility of OOD detection methods. In

dataset optimization, the observed impact on OOD detection
algorithms is intricately linked to the unique attributes each al-
gorithm leverages. Algorithms like MaxLogit[43], Energy[2],
Mahalanobis[39], and KL-Matching[43] show significant per-
formance variability due to their reliance on model confi-
dence and data distribution assumptions. MaxLogit[43] and
Energy[2] are heavily influenced by model prediction con-
fidence; thus, optimizations altering decision boundaries or
confidence scores can markedly impact their effectiveness.
The Mahalanobis[39] method presumes data points to cluster
around a central mean in feature space, and reductions in
dataset size can alter the mean and covariance estimates,
profoundly affecting performance through changes in distance
calculations. Similarly, KL-Matching[43] evaluates the diver-
gence between the predicted probabilities of in-distribution and
OOD samples, with dataset optimizations potentially leading
to a more uniform distribution that heightens the sensitivity
of KL divergence to the remaining data points, substantially
influencing algorithm performance.

Conversely, MSP[1], ReAct[44], and GradNorm exhibit sta-
bility across datasets despite size reductions. MSP[1]’s depen-
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Fig. 4: Comparative performance of OOD detection methods with varying β values for the Softplus activation function.
ViM[42], KL-Matching[43], Residual and Mahalanobis[39] demonstrate how an increase in beta affects assay sensitivity and
specificity. The ViM[42] and KL-Matching[43] methods show improved or stable detection rates as β increases, whereas the
Residual and Mahalanobis[39] methods exhibit increased false positives, indicating a sensitivity to the activation function’s
smoothness. The results highlight the critical role of β in balancing model sensitivity and robustness for OOD detection.

dence on the maximum softmax probability output means that
dataset downsizing doesn’t necessarily disrupt the distribution
of these probabilities, thus maintaining stable performance.
ReAct[44]’s method, which adjusts network activations to
mitigate adversarial perturbations, is less dependent on exact
data distributions, relying more on network activation patterns,
making it inherently robust to dataset size changes. Similarly,
GradNorm’s focus on the gradient norm as an OOD signal ties
less to data distribution and more to the model’s response,
leaving its performance relatively unscathed by dataset size
reductions. Overall, the differential impact of dataset optimiza-
tion on OOD detection methods stems from each algorithm’s
interaction with the dataset’s statistical properties and model
confidence measures. Algorithms that utilize detailed statistical
analysis of the dataset exhibit a higher sensitivity to its
changes. In contrast, those employing broader data features or
model dynamics showcase consistent performance resilience in
the face of dataset variability. This understanding is critical for
tailoring dataset optimization strategies to each OOD detection
algorithm’s specific requirements and strengths.

B. Comparison of evaluation methods

In computer vision, the capability of models to effectively
process data from diverse sources is crucial, underscoring
the importance of evaluating their robustness and general-
ization abilities on unknown data. To this end, we have
conducted a comprehensive assessment using large-scale OOD
detection benchmarks, incorporating a variety of OOD test
datasets. These include subsets from Places365[9], Texture[8],
iNaturalist[15], SUN, and ImageNet-O[14]. The results, as
presented in Tables II and III, offer a detailed analysis of

the model’s performance across different scenarios, aiming to
enhance its robustness and generalization capabilities in real-
world applications.

Our study critically examines the BiT[48] and VGG[49]
models in OOD detection tasks, highlighting the transition
from traditional ReLU activation to Softplus. This modification
is intended to harness Softplus’s gradient-preserving and dif-
ferentiable attributes, thereby increasing the model’s sensitivity
to OOD instances. As delineated in two tables, we observed
that methods like GradNorm, ReAct[44], and MaxLogit[43]
significantly benefit from Softplus’s consistent gradient flow
and smooth transitional activations. This adaptation enhances
their ability to discriminate between in-distribution and OOD
data. Similarly, the Energy[2] method and MSP[1] also show
improvements, attributable to the expanded logit range and
more informative softmax probabilities, resulting in more
precise OOD detection.

The application of Softplus in the VGG model corrobo-
rates these findings. These results highlight the complexity
of selecting appropriate activation functions for OOD de-
tection, emphasizing that enhancements beneficial for some
methods may adversely affect others. By replacing traditional
ReLU with Softplus, ActFun aims to capitalize on the latter’s
consistent gradient and smooth activation transitions. This
integration significantly enhances performance metrics such
as FPR95 and AUROC. Specifically, GradNorm demonstrates
marked improvements, evidenced by better AUROC scores
and reduced FPR95, indicating enhanced accuracy in distin-
guishing subtle differences between in-distribution and OOD
data. The ReAct[44] method also exhibits improved perfor-
mance, especially in datasets like iNaturalist[15] and SUN[10],
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benefiting from the refined control over network activations
enabled by Softplus. These findings validate that ActFun can
effectively augment OOD detection methods, leveraging the
differentiable nature of Softplus and its ability to preserve gra-
dient information, which is crucial for gradient-based methods
like GradNorm and activation adjustment techniques such as
ReAct[44].

C. Impact of hyperparameter β on results
The experimental data in Fig. 4 elucidate the effects of

the Softplus activation function’s hyperparameter β on OOD
detection methods. The ViM[42] method, which employs a
probabilistic model for uncertainty, shows improved or stable
AUROC values and a decline in FPR95 as β increases. This
trend indicates that a milder slope in the activation function
aids in better representing the probabilistic aspects of the
data, leading to more accurate uncertainty estimation, a critical
factor in OOD detection.

KL-Matching[43] relies on the Kullback-Leibler divergence
for measuring the discrepancy between ID and OOD probabil-
ity distributions. The maintenance of AUROC across different
β values suggests KL-Matching’s robustness against variations
in activation smoothness. However, a decrease in FPR95 with
higher β values implies that a more distinct activation response
enhances the method’s ability to differentiate between data
distributions, thereby improving OOD reject rates.

The Residual Method employs skip connections to maintain
gradient flow and achieves high AUROC scores, signifying
effective OOD sample identification. Nonetheless, the increase
in FPR95 observed with larger β values points to potential
over-smoothing within the feature space, possibly weaken-
ing the distinctive features that Residual connections aim to
preserve and leading to less clear ID-OOD separation at the
decision boundary.

The Mahalanobis[39] method, noted for its effectiveness in
high-dimensional spaces and based on a Gaussian distribution
assumption of ID data, shows an increase in FPR95 with rising
β values. This sensitivity suggests that larger β values, which
more closely approximate ReLU, could disturb the Gaussian
distribution assumption in feature space, compromising the
clarity of distinctions necessary for OOD detection.

In summary, the ViM[42] and KL-Matching[43] methods
appear to capitalize on both increased and decreased smooth-
ness afforded by the Softplus function. In contrast, the Resid-
ual and Mahalanobis[39] methods exhibit a nuanced response
to β, where the former suffers from increased false positives at
higher β values, and the latter shows diminished performance,
possibly due to misaligned Gaussian distribution assumptions.
This complex interplay between β and OOD detection efficacy
accentuates the importance of method-specific hyperparameter
tuning. It is essential to comprehend the interaction between
each algorithm’s core mechanics and the activation function to
fine-tune performance, particularly when modifying key model
components such as activation functions.

V. CONCLUSION

Our work introduces the open-source dataset OOD-R and
the novel method ActFun, marking significant strides in en-

hancing OOD detection in neural networks. With its noise
filtering technologies, OOD-R boasts low-noise characteristics
that achieve up to a 2.5% improvement in accuracy and a
minimum 3.2% reduction in false positives in a given network.
It facilitates the extraction of cleaner, more reliable samples.
This results in a more accurate and trustworthy evaluation.
Empirical evidence from rigorous experiments and analyses
across various domains and tasks demonstrates notable perfor-
mance improvements from our approach. Furthermore, ActFun
represents a blend of innovative technical adjustments and
deep theoretical insights, recalibrating the neural network’s
input response. This brings significant improvements to the
OOD-R dataset, increasing the performance of the GradNorm
method by 18.42% and reducing the false positive rate of
the Energy method by 16.93%. It effectively reduces the
influence of hidden units on OOD output and enhances data
separability, leading to improved results in specific networks.
Furthermore, our research elucidates the intricate interplay
between the hyperparameter β and the efficacy of various
OOD detection algorithms. We underscore the imperative
for meticulous hyperparameter tuning and an in-depth under-
standing of each algorithm’s underlying principles. ActFun’s
theoretical underpinnings provide valuable insights into neural
network mechanisms in OOD scenarios, making it a practical
and adaptable method for image and multi-class classification
applications. Our approach contributes to the current under-
standing of OOD detection within neural networks and opens
avenues for future research. We anticipate extending these
methods beyond image classification to deepen and enrich
the exploration of OOD detection mechanisms across various
neural network applications.
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Núñez, and J. Luque, “Input complexity and out-of-
distribution detection with likelihood-based generative
models,” arXiv preprint arXiv:1909.11480, 2019.

[27] Z. Wang, B. Dai, D. Wipf, and J. Zhu, “Further anal-
ysis of outlier detection with deep generative models,”
Advances in Neural Information Processing Systems,
vol. 33, pp. 8982–8992, 2020.

[28] Z. Xiao, Q. Yan, and Y. Amit, “Likelihood regret: An
out-of-distribution detection score for variational auto-
encoder,” Advances in neural information processing
systems, vol. 33, pp. 20 685–20 696, 2020.
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