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The first-principles quantum perturbation theory, also called density-functional perturbation the-
ory (DFPT), is the state-of-the-art formalism to directly link the experimental response properties of 
the materials with the quantum modeling of the electrons. Here in this work, we present an imple-
mentation of all-electron DFPT for massively parallel Sunway many-core architectures to accelerate DFPT 
calculation. We have paid special attention to the calculation of the response density matrix, the real-
space integration of the response density as well as the response Hamiltonian matrix. We also employ 
the fast and massively parallel linear scaling scheme together with the load balance algorithm for the 
DFPT calculations to improve the scalability. Using the above approaches, the accurate first-principles 
quantum perturbation calculations can be extended over millions of cores.

© 2021 Published by Elsevier B.V.
1. Introduction

The physical properties measured in the experiments are di-
rectly related to the quantum response/perturbation of the system. 
Such response properties, related to the second or higher-order 
derivatives of the total energy can be calculated within the uniform 
quantum mechanical framework by means of density-functional 
perturbation theory (DFPT) [1,2]. Such quantum perturbation the-
ory can provide the accurate predictions for many fundamental 
physical phenomena, such as super-conductivity [3], vibrational 
frequencies or phonon dispersions [4], polarizability [5,6], har-
monic and anharmonic Raman spectra [7], and much more [2].

In order to calculate the above properties theoretically, the 
DFPT method has been implemented in the computational pack-
ages. Depending on the different form of basis function, the dif-
ferent numerical method is chosen. The basis set can be the 
plane-wave [8,9], the uniform real-space grids [10], the periodic 
sinc functions [11], the b-spline functions [12], the finite ele-
ments [13], or the wavelets [14]. Although the above basis sets 
can be converged systematically, the oscillatory behavior near the 
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atomic nucleus, as shown in Fig. 1(a), cannot be accurately repre-
sented because of too heavy computation (e.g. 105 plane waves are 
needed for one core orbital). As a result, when using the above ba-
sis sets, the pseudization methods [15] using pseudo-potentials or 
projector-augmented wave (PAW) have been introduced, in which 
the core potential has been replaced with a ‘fake’ one. Although 
the pseudo-potentials have been carefully constructed to keep the 
valence part to be consistent with the all-electron method, the in-
formation of the core shells is still missing. In order to consider 
the core and valence states on the equal footing, the all-electron 
approaches have been developed, e.g. linearized augmented plane 
wave (LAPW) [16], linear muffin-tin orbital (LMTO) [17] methods 
and all-electron Gaussian type orbital (GTO) [18] or all-electron 
numerical atomic orbitals method (NAO) [19,20]. Such all-electron 
methods can achieve better precision compared with the pseudiza-
tion method [15].

For codes using all-electron atomic orbitals, such as Gaussian 
basis set, the DFPT has been mainly implemented to treat finite, 
isolated systems [21,22], and only a few literature reports exist 
for the treatment of periodic boundary conditions [23] with only 
the �-point perturbations. The implementation of the DFPT in all-
electron scheme for extended systems is not trivial [4,6]. This is 
because for periodic systems, the perturbations in DFPT destroy 
the periodic boundary conditions, and the atomic displacements 
cause a change of the entire basis set, the construction of the re-
lated matrix elements is complex and not as straightforward as 
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Fig. 1. (a) The all-electron wavefunction of the 3s orbital of the silicon atom; (b) 
The atom-centered grid used for the all-electron scheme, here we only illustrate 
the grids in the XY plane for simple.

expected. Therefore, compared to DFT, the parallelization and the 
corresponding optimizations are much more complicated, and the 
implementations of DFPT using all-electrons scheme for both the 
finite (molecules) and extended (periodic) systems are rare and 
lacking subsequent optimization, for example, the implementation 
using linear muffin tin orbitals [24] or linearized augmented plane-
waves [25,26], or Gaussian basis set for only the electric field 
perturbation [18]. The all-electron, full-potential, numerical atomic 
orbitals based FHI-aims package [4,6,20,27] is the only massively 
scalable code, which can perform the all-electrons DFPT calcula-
tion for atomic perturbation and electric field perturbation to deal 
with both the finite (molecules) and extended (periodic) systems 
on the equal footing. Here in this work, the many-cores optimiza-
tion of the DFPT method in FHI-aims package are presented to im-
prove the computational efficiency. In our scheme, the all-electron 
atomic orbitals are discretized using the atom-centered grid [28]
as illustrated in Fig. 1(b), in order to treat the all-electron full-
potential systems.

The rest of this paper is organized as follows: In Sec. 2, the ba-
sic first-principle quantum perturbation algorithms are introduced. 
Then we show our optimization strategies in Sec. 3. Performance 
is finally described and analyzed in Sec. 4. Sec. 5 concludes the 
paper.

2. The first-principles quantum perturbation theory

The first-principles perturbation calculation is the key to get 
the static or dynamic response physical properties. Here we only 
briefly summarize the first-principles quantum perturbation ap-
proach. The starting point is the zero order Kohn-Sham equation, 
which is the single-particle form of the Schrödinger equation

ĥK Sψi = [
t̂s + v̂ext(r) + v̂ H + v̂xc

]
ψi = εiψi , (1)

for the Kohn-Sham Hamiltonian ĥK S . In Eq. (1) t̂s is the single par-
ticle kinetic operator, v̂ext the (external) electron-nuclear potential, 
2

v̂ H the Hartree potential, and v̂xc the exchange-correlation poten-
tial. Solving Eq. (1) yields the Kohn-Sham single particle states ψi

and their eigenenergies εi . In our numerical implementation, the 
wavefunction ψi is expanded in terms of numeric atom-centered 
orbitals (NAOs) [20,29,30] χμ(r)

ψi(r) =
∑
μ

Cμi χμ(r) , (2)

The zero order expansion coefficients Cμi need to be determined 
by solving the generalized algebraic eigenvalue problem

H (0)C (0) = S(0)C (0)E(0) , (3)

whereby E(0) denotes the diagonal matrices containing the eigen-
values εi , and the ground state Hamiltonian matrix H (0) , coeffi-
cients matrix C (0) and overlap matrix S(0) are all of size Norb ×
Norb , where Norb is the number of orbitals in the whole system.

In order to perform the quantum perturbation calculation, the 
above ground state form of the Schrödinger equation need to be 
perturbed with the external response, hence, the response form of 
Eq. (3) within the first order is

H (0)C (1) − S(0)C (1)E(0) − S(1)C (0)E(0)

= −H (1)C (0) + S(0)C (0)E(1) , (4)

whereby E(0) and E(1) denote the diagonal matrices containing the 
eigenvalues εi and ε(1)

i respectively, H (1) is the response Hamilto-
nian matrix, C (1) is the response coefficients matrix and S(1) is 
the response overlap matrix. The Eq. (4) are called Sternheimer 
equation [31], which is the key to get the corresponding response 
density matrix (here f i denotes the occupation number of eigen-
state)

P (1)
μ,ν =

∑
i

f (εi)
(

C (1)
μ,iC

(0)
ν,i + C (0)

μ,iC
(1)
ν,i

)
, (5)

in the density-functional perturbation theory (DFPT) [1,2,4,6,32].
The flowchart of DFPT is described as follows: After the ground 

state calculation with DFT is completed, the response of the over-
lap matrix is calculated. Then the DFPT cycle begins by using an 
initial guess for the response of the density matrix P (1) , which 
then allows to construct the respective density n(1)(r). The associ-
ated response of the electrostatic potential V (1)

es,tot(r) is calculated 
by solving the Poisson equation in real space. The response Hamil-
tonian H (1) is calculated with the response density and potential. 
In turn, all these ingredients then allow to set up the Sternheimer 
equation, the solution of which allows to update the response of 
the expansion coefficients C (1) . Using a linear or more efficient 
Pulay-mixing scheme [33] to accelerate the convergence, we it-
eratively repeat the DFPT loop until self-consistency is reached, 
i.e., until the changes in P (1) become smaller than a user-given 
threshold. Finally, the physical properties are evaluated using the 
converged response density matrix.

3. Implementation and optimization

3.1. The SW26010 many-core processor

The Sunway TaihuLight supercomputer comprises of 40,960 
nodes (10,649,600 cores) with the peak performance over 125 
PFLOPS. Each node has one SW26010 many-core processor, as 
shown in Fig. 2. One SW26010 processor contains 4 core-groups 
(CGs), with 65 cores in each CG, and in total 260 cores. Each CG 
contains one management processing element (MPE), one cluster 
of computing processing elements (CPEs) and one memory con-
troller (MC). The MPE within each CG is used for computations, 
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Fig. 2. The architecture of the many-core SW26010 CPU.
Fig. 3. Two level parallelization for the grid integration. In the first process-level 
parallelization, the batches are loaded on each process as labeled by different colors 
in this figure. In the thread-level parallelization, the grids inside each batch are 
loaded on the CPEs to make many-core acceleration. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

management and communication. The CPEs is organized as an 
8 × 8 mesh (64 cores) and is designed to maximize the aggre-
gated computing power and to minimize the complexity of the 
micro-architecture. Each SW26010 processor contains 32 GB mem-
ory, with 8 GB memory in each CG. Each MPE has a 32 KB L1 
instruction cache, a 32 KB L1 data cache, and a 256 KB L2 cache 
for both instruction and data. Each CPE has a 16 KB L1 instruc-
tion cache, and a 64 KB scratch pad memory (SPM, also called 
the Local Data Memory (LDM)), which serves the same function 
as the L1 cache, but in a user-controlled way. The MPE and the 
CPEs within the same CG share the same memory which is con-
trolled by the MC. For the network, within the processor, the 4 CGs 
are connected using a network on chip (NoC). The 256 processors 
inside a supernode are fully connected through a customized net-
work board, then the supernodes are connected with the central 
network switches.

3.2. Two-level parallelization strategy

In this work, all the perturbation properties are calculated 
within the discretized three-dimensional physical grids, which is 
suitable for massively parallel implementations. The non-evened 
atom-centered grids for a three-atom system are illustrated in 
Fig. 3. In such atom-centered grid, a partition procedure for 
the grids is firstly made for each atom, and then the single-
center (atom) grids are further separated into radial and angu-
lar parts, that radially the atom-centered grid consists of sev-
3

eral spherical integration shells with radial integration weight 
wrad [34], and on these shells, angular integration points are dis-
tributed in such a way that spherical harmonics up to a certain 
order are integrated exactly by using the Lebedev grids [35], with 
angular integration weights wang . In order to partition this non-
even grid meshes in an efficient way, the grid adapted cut-plane 
method is used to make batches [36], as shown in Fig. 3 with dif-
ferent colors. The procedure to obtain batches is as follows: Firstly 
the center of the mass for all the points are computed; Secondly, 
the direction of the cut-plane are gotten by computing the normal 
of a plane; Thirdly, the position of the cut-plane are computed to 
divide all the points into two even-sized sets and the full points 
are split into two subsets (batches) using the cut-plane. The above 
procedure is repeated until getting all the batches with the desired 
size (around 100 to 300 points within each batch).

Two-levels of the parallelization has been adopted for the cal-
culations of the numerical integration: The first level paralleliza-
tion is performed over the batches, which are distributed across 
all MPI processes to achieve good parallel scalability using the 
adapted batch distribution algorithm to achieve load balance, as 
discussed in the following section; The second level parallelization 
is performed inside each batch, in which, the calculation of the in-
tegration is distributed on the cores within CPEs by looping over 
the number of the points and the number of the computed basis 
functions. The acceleration on CPEs can further improve the per-
formance. The load balancing for the integration is achieved by 
eventually distributing the integration points over the MPI pro-
cesses. The batches/grids are distributed according to the current 
summation of the points (use linked list) in each process, the new 
batch is always sent to the process with the minimal number of 
points, in this way, the load balance for the grid integration is 
achieved [36].

During the integration calculation, e.g. response Hamiltonian 
matrix, as shown in Fig. 4, each batch (labeled with a different 
color) is calculated locally for one part of the matrix element, and 
finally the matrix element is summed up using MPI_Allreduce col-
lective communication.

3.3. The O (N) solver to get the first order density matrix

In the traditional way [21] to get the response density matrix, 
we have the O (N3) computational scaling because of the includ-
ing of the dense matrix (expansion coefficients matrix) multipli-
cation. In order to reduce the O (N3) scaling to O (N) scaling, the 
dense matrix operations need to be avoided, hence the purifica-
tion related method [37] is a promising choice. In the purification 
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Fig. 4. The parallel integration method for the response Hamiltonian matrix ele-
ment between two atoms. Here we assume one atom has one orbital, so we have a 
2×2 matrix on the right side. The integration between atoms-1 and atoms-2 gives 
the matrix elements M(1,2) and M(2,1). The integration is performed locally in each 
batch (labeled with different color) and the final first order Hamiltonian matrix el-
ement is calculated by merging the matrix element over the corresponding batches.

Algorithm 1 The linear scaling TC2-DFPT algorithm, where Nocc is 
the number of occupied states, εmin(H)/εmax(H) denotes the mini-
mal/maximum boundary for the eigenvalues of Hamiltonian matrix 
H (0) , which is estimated with Gershgorin’s Circle Theorem.
Require:

H(0): zero order Hamiltonian
S(0): zero order Overlap
H(1): first order Hamiltonian
P(1): first order density matrix

1: H(0)

orth ← S(0)− 1
2 H(0) S(0)− 1

2

2: H(1)

orth ← S(0)− 1
2 H(1) S(0)− 1

2

3: estimate εmin(H(0)

orth), εmax(H(0)

orth)

4: X (0)
0 ← (εmax I − H(0)

orth)/(εmax − εmin)

5: X (1)
0 ← (−H(1)

orth)/(εmax − εmin)

6: for n ← 0, max do
7: if T r[X (0)

n ] − Nocc < 0 then
8: X (0)

n+1 ← 2X (0)
n − (X (0)

n )2

9: X (1)
n+1 ← 2X (1)

n − X (1)
n X (0)

n − X (0)
n X (1)

n
10: else
11: X (0)

n+1 ← (X (0)
n )2

12: X (1)
n+1 ← X (1)

n X (0)
n + X (0)

n X (1)
n

13: end if
14: Error ← max(X (0)

n+1 − X (0)
n )

15: if Error ≤ tolerance then
16: break
17: end if
18: end for
19: P(0) ← S(0)− 1

2 X(0)
n S(0)− 1

2

20: P(1) ← S(0)− 1
2 X(1)

n S(0)− 1
2

method, only the zero/first order density and Hamiltonian matrices 
are used for the matrix multiplication, so the sparse matrix mul-
tiplication can be applied since both the density and Hamiltonian 
matrices can be written in the sparse matrix form. Here we use the 
orthogonal formulation of the second order trace-correcting pu-
rification (TC2) method for DFPT [38], which is called TC2-DFPT. 
Within this approach, the first order density matrix P (1) is ex-
plicitly constructed from the first order Hamiltonian matrix H (1) . 
As shown in Algorithm 1, the response density matrix is calcu-
lated only with sparse matrix-matrix multiplication, which is the 
key to achieve linear scaling, and provides the base for comput-
ing the response density matrix explicitly and rapidly. There are 
two parameters to control the simulation error of the TC2-DFPT 
method. One parameter is the filter, which refers to the thresh-
old to determine which matrix elements can be treated as zero. 
The other parameter is the tolerance, which is the convergence-
threshold which compared the band energy between the current 
iteration and the last iteration.

The MPI level distributed memory parallelization of the sparse 
matrix-matrix multiplication can be performed with 3D (or 2.5D) 
SpGEMM algorithm [39,40]. In this algorithm, each matrix is dis-
tributed along the cubic 

√
P/c × √

P/c × c processes grid, where 
4

Algorithm 2 The load balance method in sparse matrix-matrix 
multiplication.
Require:

n: matrix dimension
index_lookup: permutation array
A : input sparse matrix
A′ : load-balanced sparse matrix

1: for i ← 1, n do
2: index_lookup(i) ← i
3: end for
4: for i ← n, 1 do
5: j ← randint(1, n)
6: swap(index_lookup(n), index_lookup( j))
7: end for
8: Broadcast index_lookup to all processes
9: let Prow and Pcol be empty matrices

10: for i ← 1, n do
11: Prow (i, index_lookup(i)) ← 1
12: Pcol(index_lookup(i), i) ← 1
13: end for
14: A′ ← Prow A Pcol

1 < c <
3
√

P and P is the number of the total processes. Then 
each matrix is broadcasted and multiplied locally to compute a 
contribution to a local result matrix, and finally the matrix is 
summed up using non-blocking all-to-all collective communica-
tion. It should be noted that, since the input matrices are usually 
not well load balanced, the elements are redistributed by permut-
ing the rows and columns in order to achieve the load balance in 
the sparse matrix-matrix multiplication, as shown in Algorithm 2.

3.4. Many-core acceleration strategy

For many-core acceleration, we use athread to achieve a suit-
able mapping of the DFPT code in FHI-aims onto the Sunway 
processors. Since the on-chip fast buffer and the available mem-
ory bandwidth of the Sunway processor are relatively limited, the 
memory usage during the porting is significantly more challeng-
ing [41]. The major loops are paralleled in CPE cluster architecture, 
and the frequently-accessed variables are copied into the local fast 
buffer of the CPE.

For the calculations of the first order density and first or-
der Hamiltonian within one processor, the first loop is over the 
number of batches (nbatches) allocated in the current processor. 
Then inside one batch, another loop is over the number of the 
points (npoints) in this batch, which can be paralleled with athread. 
Here in this work, the athread acceleration is used for the n1_part2 
as shown in Algorithm 3 and for the H1_part1 in Algorithm 4.

Besides the calculation of the loops over n_points, the dense 
matrix-matrix multiplication (DGEMM) is another performance 
bottleneck in the calculation of integrations. The parallel blocked 
matrix-matrix multiplication algorithm [42] is used to achieve high 
performance. The tile block of the matrix is loaded to the CPEs 
via high bandwidth asynchronized DMA (Direct Memory Access) 
mechanism at one time to accelerate the data transformation to 
CPEs, in which a double-buffering technique is used to hide the 
non-negligible transferring time. Then the SIMD (Single Instruction 
Multiple Data) assembly codes are adopted to further improve the 
performance by using the available 256-bit SIMD vector registers 
in the SW26010 processor [43]. Such optimized DGEMM is applied 
in the calculations of n1_part1 as shown in Algorithm 3 and the 
H2_part1 in Algorithm 4.

We have also ported the TC2-DFPT scheme to the Sunway 
many-core architecture. Here we accelerate the local sparse matrix-
matrix multiplication with swSparse, a sparse library for Sunway 
many-core architecture using athread, which can gain an average 
speedup of 9.2×/10.4× compared to the original version for the 
sparsity of 18.9%/4.5%.
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Algorithm 3 The many-core optimization of the calculation of first 
order density.
Require:

P(1): first order density matrix n(1): first order density

1: for i ← 1, nbatches do
2: get npoint and ncompute in current batch

3: P(1)

local ← global sparse matrix P(1)

4: dgemm(P(1)

local , wave, M) � n1_part1
5:
6: for j ← 1, npoints do � n1_part2

7: n(1)

local( j) ← ∑ncompute

k M(k, j) wave(k, j)
8: end for
9: global n(1) ← n(1)

local
10: end for

Algorithm 4 The many-core optimization of the calculation of first 
order Hamiltonian.
Require:

V(1): first order potential
H(1): first order Hamiltonian

1: for i ← 1, nbatches do
2: get npoint and ncompute in current batch

3: V(1)

local ← global sparse matrix V(1)

4: for j ← 1, npoints do � H1_part1
5: for k ← 1, ncompute do

6: M(k, j)= w( j)V(1)

local(j) wave(k, j)
7: end for
8: end for
9: dgemm(M, wave, H(1)

local) � H1_part2

10: global sparse H(1) ← H(1)

local
11: end for

4. Performance results

4.1. Validation

In order to validate the linear scaling TC2-DFPT method, we 
show the convergence behavior of the linear scaling TC2-DFPT 
method for a system containing 386 atoms in Fig. 5. Here we use 
the “tier 1” basis set, light grid setting,and the LDA functional [44]. 
The benchmark polarizability is calculated with the O (N3) method. 
The polarizability difference (�α=α − αbenchmark) calculated with 
various setting (filter, tolerance) are plotted, which clearly shows 
a rapid convergence to the benchmark result. The error at set-3 
is already 0.0022 Bohr3 (5.7× 10−6 Bohr3/atom) and if we in-
crease to use set-5, the error reduces to 3× 10−5 Bohr3 (7.8× 10−8

Bohr3/atom).

4.2. Single node performance

The speedups of different DFPT kernels within one SW26010 
processor (i.e. 4 CGs, 260 cores) are presented in this part. The 
speedups are measured by the calculation time of 4 MPE divide 
by the calculation time of 4 MPE and the 256 CPEs. We use sili-
con solid as an example, for which we compute the three diagonal 
components of the polarizability tensor and the dielectric constant 
using LDA functional, the ‘tight’ numerical setting and ‘tier 3’ basis 
set, with 7×7×7 k-points in the primitive unit cell.

In Fig. 6, we show the speedup for the first order density (n(1)). 
The upper panel shows the result for the first part of n(1) while 
the lower panel shows the result for the second part of n(1) . 
The speedup depends on two parameters: npoint and ncompute. The 
npoint is the number of the points in one batch, and the ncompute
is the number of the basis functions in one batch. In the first part, 
a local dense density matrix multiplication (dgemm) is performed. 
Here we use the athread optimized dgemm function to accelerate 
the calculation. The speedup ratio for this kernel increases from 
5

label filter tolerance �α (Bohr3)
set-1 10−6 10−5 0.0487
set-2 10−8 10−4 0.0355
set-3 10−7 10−5 0.0022
set-4 10−8 10−5 0.00006
set-5 10−8 10−6 0.00003

Fig. 5. Convergence behavior of the O (N) TC2-DFPT method for the polarizability 
difference (�α=|α −αbenchmark|) with respect to numerical parameters (filter, toler-
ance) as shown in the upper Table. Here the parameter filter refers to the threshold 
to determine which matrix elements can be treated as zero while the parameter 
tolerance means the convergence-threshold within one SCF cycle.

Fig. 6. The performance speedup for the first order density (n(1)) within one Sunway 
many-core processor. The speedup is plotted with respect to npoint and ncompute in 
every local batch. The upper panel(a) shows the speedup of the first part of the n(1)

calculation and the lower panel (b) shows the speedup of the second part of the 
n(1) calculation.

175× to 328× with increasing the two parameters npoint/ncompute
from 34/1834 to 78/2029. The high speedup of the dgemm kernel 
comes from the optimization with architecture-aware methodolo-
gies to exploit data locality and the effective memory bandwidth 
on SW26010 processor. [43] Similarly, the performance speedup 
for the second part of n(1) is also related to the number of the 
local points (npoint) since we use athread for the npoint loop. In ad-
dition, the computation amount inside the npoint loop is decided by 
the number of the computed basis function (ncompute) as there is a 
dot product calculation for the vectors of length ncompute. The sec-
ond part of n(1) would improve the performance by 8 to 22 times 
with increasing the two parameters npoint/ncompute from 34/1834 
to 103/1589.

In Fig. 7, the speedup for the calculation of the first order 
Hamiltonian (H (1)), is shown. In the upper panel of Fig. 7, the 
speedup of the first part of the H (1) is plotted with respect to 
npoint and ncompute. Here the speedup is increased from 16 to 25 
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Fig. 7. The performance speedup for the first order Hamiltonian (H(1)) within one 
Sunway many-core processor. The speedup is plotted with respect to npoint and 
ncompute in every local batch. The upper panel(a) shows the speedup of the first 
part of the H(1) calculation and the lower panel (b) shows the speedup of the sec-
ond part of the H(1) calculation.

Fig. 8. The time and performance speedup for the calculation of the first order den-
sity (upper panel) and the first order Hamiltonian (lower panel) in one DFPT cycle 
with respect to the average number of the points in every batch. The blue bars are 
the original time while the red bars refer to the many-core optimized time. The 
speedup values are labeled with black squares and are annotated in the parenthe-
ses.

Fig. 9. The strong scalability for the computation time of the paracetamol crystal 
containing 3840 atoms (38208 basis). The blue bars is the DFPT time per cycle, and 
the black line is the parallel efficiency. Simulation time and parallel efficiency values 
are annotated on the top of bars and in the parentheses respectively.

with increasing the two parameters npoint/ncompute from 32/1851 
to 73/2043. Then in the second part, the matrix multiplication is 
performed for the local dense matrix which is again optimized 
with athread. The speedup ratio for this kernel increases from 69×
to 394× with increasing the two parameters npoint/ncompute from 
36/1721 to 88/1752.

After evaluating the performance speedup for the kernel func-
tions in the local batch calculation, we begin to discuss the inte-
gration calculation for the whole/global calculation of first order 
Hamiltonian and the first order density. In such calculations, the 
local matrixes need to be merged into the global matrices, and 
the data need to be copied between the MPE and the CPEs. As a 
result, the speedup is reduced compared with the individual ker-
nel function. However, it is also clearly shown that, the speedup 
is increased with increasing the average number of points in every 
batch. Fig. 8 gives the time for the calculation of the whole first or-
der density in one DFPT cycle with respect to the average number 
of the points in every batch. The speedup changes from 7.3 to 12.8 
with increasing the average batch size from 100 to 300. In Fig. 8, 
the time for the calculation of the whole first order Hamiltonian 
is given, the many-core optimization improves the performance by 
2.7 to 9.6 times with increasing the average batch size from 100 to 
300 which demonstrates again the performance number depends 
on the number of points per CPE.

4.3. Scalability results

Fig. 9 shows the results of strong scalability for DFPT calcula-
tions with LDA functional, “light” basis set on the Sunway Taihu-
Light supercomputer. The system used is the paracetamol crystal 
(form II) containing 3,840 atoms in the unit cell (38,208 basis func-
tions). The number of the Sunway processes increases from 5,120 
all the way to 61,440 for the calculation (the number of cores rang-
ing from 327,680 to 3,932,160). The parallel efficiency is around 
41% at 61,440 processes (3,932,160 cores). The efficiency is reduced 
6
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due to the batches distributed per process is not enough for the 
computation.

5. Conclusion

We have presented the numerical algorithms and parallel 
schemes of the first-principles quantum perturbation simulations 
within an all-electron, numeric atom-centered orbitals framework 
to reach a good performance over millions of cores on Sunway 
many-core architectures. Two levels of parallelization have been 
adopted to utilize the nature of the physical problems and the 
many-core architecture. Moreover, the linear-scaling scheme is 
used to achieve high performance. The scalability of the DFPT code 
for the molecular crystal is excellent. To the best of our knowl-
edge, this is the first reported quantum perturbation calculation 
that can scale to over millions of cores. The proposed paralleliza-
tion schemes and novel algorithms in this work can be generalized 
to a variety of other types of many-core architectures such as GPU, 
for example, the matrix-matrix multiplication (DGEMM) in the cal-
culation of the first order density and the first order Hamiltonian 
can use the NVIDIA’s cuBLAS library, which has already interfaced 
to the main FHI- aims code.
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